Beiträge zur Chemie des Bors, 221^[1]

Kinetische und thermodynamische Produktkontrolle bei der Addition von HX-Verbindungen an ein Amino-phosphanylimino-boran $R_2N-B\equiv N-PR_2^{\prime}$

Heinrich Nöth*, Holger Stolpmann und Martina Thomann

Institut für Anorganische Chemie der Universität München, Meiserstraße 1, 80333 München, BRD

Eingegangen am 23. September 1993

Key Words: Boranes / Aminoboranes / Phosphanyliminoboranes

Contributions to the Chemistry of Boron, $221^{[1]}$. – Kinetic and Thermodynamic Product Control in the Addition of HX Compounds to an Amino Phosphanylimino Borane $R_2N-B=N-PR_2^{\prime\,\pm}$

The reaction of equimolar amounts of HI with $tmp=B\equiv N-PtBu_2$ (3) (tmp = 2,2,6,6-tetramethylpiperidino group) in an unpolar solvent yields the phosphonium salt [$tmp-B=N-PHtBu_2$]I (4). No such well-defined reaction was observed with triflic or tetrafluoroboric acid. In contrast, HCl reacts

with **3** to produce a mixture of $tmp-B(Cl)-NH-PtBu_2$ (**5**) and $tmp-B(Cl)-N=PHtBu_2$ (**6**). On heating or on standing at ambient temperature the unique proton of **5** migrates from the N to the P atom with formation of **6**, which, therefore, is thermodynamically more stable than **5**.

Halogenwasserstoffe HX addieren sich an Iminoborane RB=NR' zu Amino-halogen-boranen RB(X)-NHR'^[2]. Gleiches gilt auch für das Amino-imino-boran $1^{[3]}$. Ist die Gruppe X einer Säure HX sterisch anspruchsvoll wie in HCo(CO)₄, dann resultiert nur eine Protonierung zum Kation $2^{[4]}$.

Das [Di-(*tert*-butylphosphanyl)-imino]boran $3^{[5]}$ enthält im Vergleich mit 1 eine weitere Funktion, die R₂P-Gruppe, die protoniert werden kann. Wie Reaktionen mit Heterocumulenen X=C=Y belegen^[6], ist das P-Atom in 3 das Zentrum größter Nucleophilie. Es könnte daher auch gegenüber HX-Säuren in Konkurrenz zur Iminofunktion treten. Damit bietet sich 3 als eine Modellverbindung an, um zwischen thermodynamischer und kinetischer Reaktionskontrolle bei der Addition von HX-Verbindungen zu unterscheiden.

Reaktionen

Untersucht wurden Reaktionen von 3 mit $HOSO_2CF_3$, HBF_4 , HI und HCl. 1:1-Reaktionen von 3 mit Trifluorme-

thansulfonsäure liefern ein Produktgemisch, wie mehrere Signale im ³¹P-NMR-Spektrum ($\delta = 10-90$) belegen. Dabei bleibt ein Teil von **3** unumgesetzt. Die Einwirkung von 3 Mol HOSO₂CF₃ auf 1 Mol **3** führt zu B(OSO₂CF₃)₃ und H₂NP*t*Bu₂ neben [tmpH₂][B(OSO₂CF₃)₄]: danach greift HOSO₂CF₃ bevorzugt die BN-Dreifachbindung in **3** an, was letztlich zur Abspaltung der tmp-Gruppe führt. Die Gleichungen (1) und (2) beschreiben die Bildung dieser Produkte. Die stark raumbeanspruchende Base tmpH addiert sich wohl aus sterischen Gründen nicht an das stark Lewisacide B(OSO₂CF₃)₃^[7], sondern wird als Tetrakis(triflato)borat abgefangen.

$$tmp-B \equiv N-PtBu_2 + 3 HOSO_2CF_3$$
(1)
 $\rightarrow tmpH + B(OSO_2CF_3)_3 + H_2N-PtBu_2$

$$tmp-H + HOSO_2CF_3 + B(OSO_2CF_3)_3$$
(2)

$$\rightarrow [tmp H_2][B(OSO_2CF_3)_4]$$

Auch die Reaktion von HBF₄ mit 3 in Ether verläuft bei einer 1:1-Umsetzung uneinheitlich. Das gebildete unlösliche Produkt enthält gemäß IR-Spektrum keine PH-Komponente, belegt aber durch Abwesenheit einer Bande bei 1900 cm⁻¹, daß die B=N-Gruppe fehlt. In CDCl₃ gelöst, legen Resonanzen bei $\delta^{11}B = -0.2 [h_{1/2} = 77 \text{ Hz}] \text{ und } -1.5 [h_{1/2} = 19 \text{ Hz}]$ das Vorliegen von BF₄^{-[8]} und tmpH·BF₃^[9] nahe. Auch bei Variation der Stöchiometrie war kein eindeutiges Reaktionsverhalten zu erkennen.

Iodwasserstoff reagiert mit 3 in Toluol im Molverhältnis 1:1 zum Phosphoniumsalz 4, das durch ein ³¹P-NMR-Signal bei $\delta = 43.3$, ¹ $J(^{31}P^{1}H) = 504$ Hz, charakterisiert ist^[10]. Die Abschirmung des ¹¹B-Kerns von 4 ändert sich im Vergleich mit 3 praktisch nicht. Folglich sind auch die Bindungsverhältnisse vergleichbar. Beim Umkristallisieren

Chem. Ber. 1994, 127, 81-85 © VCH Verlagsgesellschaft mbH, D-69451 Weinheim, 1994

wurde allerdings statt **4** das Salz $[tmpH_2]I$ erhalten, das röntgenstrukturanalytisch charakterisiert wurde^[11].

Im Gegensatz zur 1:1-Umsetzung von HI mit 3 führt die 1:1-Reaktion von 3 mit HCl in Ether gemäß Gl. (4) und (5) zu einem 1:3-Gemisch der Isomeren 5 und 6.

Wird das Gemisch von 5 und 6 5h in Hexan unter Rückfluß erhitzt, dann liegt nurmehr 6 vor. Diese Protonenwanderung findet auch bei Lagerung des Gemisches von 5 und 6 (3 Monate) bei Raumtemperatur statt. Da sich 6 nicht in 5 umwandeln läßt (tiefere Temperaturen, Variation der Lösemittel), ist 6 das thermodynamisch stabilere Isomer und 5 somit das kinetisch kontrollierte Reaktionsprodukt. Reines 5 fällt bei der Umsetzung von tmpBCl₂ mit LiNHPtBu₂ gemäß Gl. (6) an.

Spektren

Tab. 1 ermöglicht einen Vergleich der NMR-spektroskopischen Daten von 5 und 6. Das Dublett im ³¹P-NMR-Spektrum von 6 belegt mit ${}^{1}J({}^{31}P^{1}H) = 244$ Hz und $\delta =$ 40.9 das Vorliegen einer Phosphonium-Struktur^[10], während das Singulett von 5 bei $\delta = 64.9$ einem Aminophosphan R₂N-PR₂^[12] entspricht. Die Abschirmung seines ¹¹B-Atoms fällt in den Bereich von Diaminochloroboranen^[13]. In 6 ist der ¹¹B-Kern hingegen um 8 ppm besser abgeschirmt. Im Vergleich zu 3 führt die Protonierung am P-Atom jedoch zu einem Abschirmungsverlust von 9 ppm. Damit wird 6 zweckmäßig durch die beiden Grenzformeln 6A und 6B beschrieben.

Einen ähnlichen Abschirmungsgewinn erfahren die Bor-Kerne auch in Ketimino-boranen $R_2B-N=CR_2$ im Ver-

gleich zu Aminoboranen $R_2B-NR_2^{[13]}$. Relativ wenig unterscheidet sich die Abschirmung der CMe₃-Protonen mit $\delta = 1.08$ bei **5** und 0.96 bei **6**. Gleiches trifft auch für den Wert von ${}^{3}J({}^{31}P^{1}H)$ mit 11.4 bzw. 15.1 Hz zu, trotz der unterschiedlichen Koordination am P-Atom. Dies spiegelt sich auch in einer mit $\Delta^{13}C = 1.7$ ppm geringen Differenz der $\delta^{13}C$ -Werte für die quartären C-Atome der CMe₃-Gruppen in **5** und **6** wider. In Übereinstimmung damit steht der größere C-P-C-Bindungswinkel in **6**, der jenen in **5** um 6.5° übertrifft (s.w.u.).

Bei Raumtemperatur beobachtet man für 5 und 6 nur je ein einziges ¹H- bzw. ¹³C-NMR-Signal für die Methylgruppen der tmp-Substituenten. Danach liegt in Lösung keine Rotationsbehinderung um die BN-Achse der tmp-B Teilstruktur vor (vgl. mit der Struktur im festen Zustand).

Die eindeutige Unterscheidung zwischen den Isomeren 5 und 6 durch die NMR-Spektren spiegelt sich nicht in den Massenspektren beider Verbindungen, denn es gibt praktisch keine Unterschiede bei der Untersuchung des 5+6-Gemisches und von reinem 6. Dies legt nahe, daß 5 in der Gasphase bereits als 6 vorliegt. M⁺⁺ tritt mit 33% relativer Intensität auf. Das 100-%-Signal stammt von $[M-CH_3]^+$. In untergeordnetem Maße verlassen Cl⁻ (15%), tmp⁻ (30)% bzw. *t*Bu⁻ (68%) das Mutter-Ion M⁺⁺.

Molekülstrukturen

IR- und NMR-Spektren der HCl-Addition an 3 belegen die Konstitutionen von 5 und 6 zweifelsfrei. Abgeschen von der Stellung des "singulären" Protons sollten sich die Gerüststrukturen beider Verbindungen nicht gravierend unterscheiden. Um dies zu überprüfen, wurden die Molekülstrukturen mittels Röntgenstrahlbeugung bestimmt. Die Abb. 1 und 2 zeigen die Ergebnisse.

Charakteristisches Merkmal von 5 ist die Planarität des N1-B(Cl)-N2-P1-Gerüstes. Auf dieser Ebene steht die C5-N1-C1-Ebene der tmp-Gruppe praktisch senkrecht (93.8°). Damit ist die B-N1-Bindung zur tmp-Gruppe als $N(sp^2)-B(sp^2)$ -Einfachbindung anzusprechen, da das N1-Atom planar von den Atomen B, C1 und C5 umgeben ist. Die B-N1-Bindungslänge ist mit 1.420(7)Å kaum länger als die B-N2-Bindung mit 1.412(8)Å, obwohl für die B-N2 Bindung geometrisch optimale Voraussetzungen für eine BN- π -Bindung gegeben sind. Die Aufweitung des B-N2-P-Bindungswinkels auf 130.0(5)° geht vor allem auf die Van der Waals-Abstoßung zwischen den Methylgruppen in 5 zurück. Der C11-P-C15-Bindungswinkel entspricht mit 109.1(3)° praktisch dem Tetraederwinkel, obgleich ein λ^3 -P(III)-Atom vorliegt. Dem üblichen Bindungswinkel an P(III)-Atomen kommen hingegen die Winkel N2-P-C mit 99.7(2) bzw. 101.7(2)° nahe (Tab. 2).

Das NH-Proton steht *trans* zur B-Cl-Bindung und zum freien Elektronenpaar am P-Atom. Somit treten keine intra-, aber auch keine intermolekularen H-Brückenbindungen auf. Der P-N-Abstand in 5 ist mit 1.741(4)Å länger als in Aminophosphanen üblich (1.67-1.70Å)^[14]. Mit 1.838(9)Å zählt die B-Cl-Bindung zu den langen B-Cl-Bindungen^[15] und übertrifft damit den berechneten Einfachbindungsabstand (1.72Å) nicht unerheblich.

	5	6	4
δ ¹¹ Β	33.5	25.5	22.7
$\delta^{31}\mathbf{P}$	64.9	40.9 [d, ${}^{1}J(PH) = 40$]	$43.3 [^{1}J(PH) = 540]$
$\delta^{1}H$	$1.08 [d, {}^{3}J(PH) = 11.4 Hz, 18 H]$	$0.96 [d, {}^{3}J(PH) = 15.1, 18 H]$	$1.39 [18 \text{ H}, {}^{3}J(\text{PH}) = 17.9]$
	1.39 (m, br, 18H)	1.72 (br, 6H, [CH ₂] ₃)	1.61 (s, 12H, CMe ₃)
		1.75 [s, 12H, C(CH ₃) ₂]	1.72 (br, 6H, [CH ₂] ₃)
	3.87 (s, br, 1H, NH)	$6.12 [d, {}^{1}J(PH) = 400]$	8.03 (d, 1 H, PH)
$\delta^{13}C$	28.4 [d, ${}^{2}J(PC)$ 16.6,	26.7 [s, $C(CH_3)_3$]	26.1 [d, $C(CH_3)_2$,
	$C(CH_3)_3$		J = 24 Hz]
	23.3 $[d, I]J(PC) = 25.7,$	$6.12 [d, {}^{1}J(PH) = 400]$ $26.7 [s, C(CH_3)_3]$ $33.5 [d, {}^{1}J(PC) = 68,$ $C(CH_3)_3]$ 15.7 (s, C4)	32.2 [d, $C(CH_3)_2$,
	$C(CH_3)_3$	$C(CH_3)_3$	J = 86 Hz]
	16.6 (s, C4)	1.72 (br, 6H, $[CH_2]_3$) 1.75 [s, 12H, $C(CH_3)_2$] 6.12 [d, ¹ J(PH) = 400] 26.7 [s, $C(CH_3)_3$] 33.5 [d, ¹ J(PC) = 68, $C(CH_3)_3$] 15.7 (s, C4) 32.5 (s, C7, 8) 36.9 (s, C3, 5) 53.3 (s, C2, 6) 2292	16.2 (s, C4)
	32.0 (s, C7, 8)	32.5 (s, C7, 8)	27.5 (s, C7, 8)
	38.3 (s, C3, 5)	36.9 (s, C3, 5)	35.4 (s, C3, 5)
	52.4 (s, C2, 6)	53.3 (s, C2, 6)	53.9 (s, C2, 6)
vPH/NH	3338	2292	2305
vBN	1490	1520	1946/1886

Abb. 1. Molekülstruktur von 5 im Kristall. Thermische Ellipsoide repräsentieren eine 25proz. Wahrscheinlichkeit

Auch in den beiden kristallographisch unabhängigen Molekülen von 6 (das zweite wird mit 6' bezeichnet, Werte stehen in Klammern) liegen planare N1-B(Cl)-N2-P1-Gerüste vor. In diesen Molekülen sind die C1-N1-C5-Gruppen gegen das Molekülgerüst nur um 37.3 bzw. 40° verdrillt. Trotz der deshalb (im Vergleich mit 5) zu erwartenden größeren BN-Bindungsordnung sind die B-N1-Bindungen mit 1.418(6) [1.423(7)]Å kaum kürzer als im Isomer 5. Dies trifft allerdings nicht für die B-N2-Bindung mit 1.383(4) [1.370(7)]Å zu. Hingegen ist die B-Cl-Bindung in 6 mit 1.863(5) bzw. 1.868(6)Å noch länger als in 5. Die P-N2-Bindungslänge beträgt in 6 1.571(4) bzw. 1.567(4)Å. Sie entspricht der P-N-Bindungslänge in Iminophosphoranen R₃P=NR'^[14].

Im Vergleich mit 5 sind die P1-N2-B1-Bindungswinkel in 6 mit 132.6(3) bzw. 133.5(4)° etwas aufgeweitet. Das PH-Proton steht in 6 *cis* zum Cl-Atom. Die C-P-C-Bindungswinkel betragen im Mittel 115.6(2)°. Durch die Protonierung am P-Atom wird dieser Winkel im Vergleich mit 5 um etwa 6° aufgeweitet, Hinweis darauf, daß er weitgehend

Abb. 2. Molekülstruktur der beiden unabhängigen Moleküle 6 im Kristall. Thermische Ellipsoide entsprechen einer 25proz. Wahrscheinlichkeit

durch den Raumbedarf der beiden tert-Butylgruppen bestimmt wird.

Während die Bindungsparameter der beiden 6-Moleküle in der kristallographischen Einheit sich erwartungsgemäß nur innerhalb der Standardabweichungen, d.h. nicht signifikant unterscheiden und die tmp-Gruppe in beiden vonein-

Tab. 2. Ausgewählte Bindungsparameter des Isomerenpaares 5 und
6. Das kristallographisch unabhängige, zweite Molekül der Elementarzelle ist mit 6' bezeichnet. Bindungslängen in Å, Bindungswinkel in °, Standardabweichungen in Klammern

Bindungslängen	5	6	6'
B-N1	1.429(7)	1.418(6)	1.423(7)
B-N2	1.412(8)	1.383(7)	1.370(7)
B-Cl	1.838(9)	1.863(5)	1.868(6)
N2-P	1.741(4)	1.571(4)	1.567(4)
P-C11	1.886(5)	1.830(5)	1.840(6)
P-C15	1.898(6)	1.837(6)	1.828(5)
N1-C1	1.492(6)	1.493(6)	1.483(6)
N1-C5	1.498(5)	1.494(6)	1.497(7)
Bindungswinkel			
N1-B-N2	123.7(7)	127.4(4)	127.4(5)
N1-B-Cl	121.5(5)	116.5(4)	116.4(4)
N2-B-Cl	114.9(4)	116.1(4)	116.1(4)
B-N2-P	130.0(5)	132.6(3)	133.5(4)
N2-P-C11	99.7(2)	110.5(3)	109.5(2)
N2-P-C15	101.7(2)	110.3(3)	111.2(2)
B-N1-C1	118.5(4)	122.9(4)	122.9(4)
B-N1-C5	119.3(4)	118.6(4)	118.6(4)
C11-P-C15	109.1(3)	115.3(2)	115.9(2)

ander unabhängigen Molekülen Twist-Konformation einnehmen, resultiert der Unterschied zwischen beiden, wie aus Abb. 2 ersichtlich, in einer unterschiedlichen Orientierung der C_2N -Ebenen zur N1-B(Cl)-N2-Ebene.

Diskussion

Phosphan ist bekanntlich eine schwächere Base gegenüber H⁺-Ionen als Ammoniak. Gleiches gilt für Organylphosphane und Amine. Konsequenterweise erwartet man für Systeme, die über eine P-N-Einheit verfügen, daß die Umsetzung mit Protonensäuren, die letztlich zur Spaltung der PN-Bindung führt^[16], primär mit einer Protonierung am N-Atom beginnt. So dienen die Reaktionen nach Gl. (7) und (8) zur Darstellung von Dialkylphosphor(III)-chloriden^[17].

$$R_2N-PR'_2 + HCl \longrightarrow \left\{ [R_2N - PR'_2]Cl \right\} \xrightarrow{HCl} [R_2NH_2]Cl + R'_2PCl \quad (7)$$

R2'PCl

(8)

$$R_2N-PCl_2 \xrightarrow{+2R'MgCl} R_2N-PR'_2 \xrightarrow{+2R'MgCl}$$

$$(Me_2N)_3P + HBF_4 \xrightarrow{\text{Ether}} [(Me_2N)_3PH](BF_4) \quad (9)$$

Vor einigen Jahren zeigten allerdings Nifant'ev et al.^[18], daß Tris(dimethylamino)phosphan mit HBF₄ in Ether nicht unter N-Protonierung reagiert, sondern nach Gl. (9) das Phosphoniumsalz 7 entsteht. Und Bertrand et al.^[0] wiesen nach, daß Aminophosphane $R_2P-NH-PR'_2$ bei der Einwirkung starker Elektrophile X unter Protonenwanderung in $R_2HP=N-PR_2X$ -Verbindungen übergehen. Andererseits fanden Schmidpeter et al.^[19], daß die Protonierung von (Phosphanylimino)phosphanen in Gegenwart stark elektronenziehender Substituenten Y am N-Atom stattfindet, bei elektronenreichen Substituenten Y hingegen das PH-Tautomere resultiert.

Das erste reversible, tautomere Gleichgewicht wurde von Binder et al. bei Aminodialkoxyphosphanen gemäß Gl. (10) beobachtet^[20]. Allerdings ist das Tautomerenpaar 5/6 unseres Wissens das erste Beispiel, von dem beide Isomere isoliert werden konnten, und die Umlagerung von 5 in 6 letzteres als das thermodynamisch stabilere Produkt ausweist. Der Protonentransfer von 5 und 6 ist allerdings nicht symmetrieerlaubt. Er bedarf einer Base, die das Molekül selbst stellt, das über mehrere basische Zentren verfügt.

Zur Stabilität von 6 trägt sicher nicht die im Vergleich mit der NH-Bindung schwächere PH-Bindung bei, sondern vor allem der Gewinn an π -Bindungsenergie durch die Iminophosphoran-Stufe. Aus den Strukturdaten geht aber hervor, daß mehrere Parameter für die größere thermodynamische Stabilität von 6 im Vergleich zu 5 verantwortlich sind, die wir über Ab-initio-Rechnungen auffinden wollen.

Wir danken dem Fonds der Chemischen Industrie und der BASF-Aktiengesellschaft für die Förderung unserer Arbeiten, sowie den Damen und Herren am Institut, die zahlreiche NMR- und MS-Messungen sowie die Elementaranalysen ausführten.

Experimenteller Teil

Alle Versuche wurden unter N₂-Schutzgas mit Schlenk-Techniken durchgeführt. **3** erhielten wir nach Lit.^[5] HI-Gas wurde aus konz. Iodwasserstoffsäure und P₄O₁₀ gemäß Lit.^[21] dargestellt. HOSO₂CF₃ ist käuflich. Alle Lösemittel wurden nach Standardmethoden getrocknet und unter N₂-Schutzgas destilliert und aufbewahrt. – Spektren: Bruker AC 200 (¹¹B, ¹³C), Jeol 270 (³¹P, ¹³C) sowie Jeol 400 (¹H, ¹³C). – MS: Varian CH7 (70 eV).

Chlor[(di-tert-butylphosphanyl)amino](2,2,6,6-tetramethylpiperidino)boran (5): Zu 35.6 g tBu₂PNH₂ (227 mmol), gelöst in 100 ml n-Hexan, wurden bei 0°С unter Rühren 146 ml einer 1.6 м BuLi-Lösung in Hexan getropft. Anschließend wurde die Suspension 30 min unter Rückfluß erhitzt; dabei löste sich das gebildete tBu₂PNHLi. Danach tropfte man die gelbe tBu₂PNHLi-Lösung bei Raumtemp. unter Rühren zu einer Lösung von 46.7 ml tmpBCl₂ (240 mmol) in 250 ml Hexan. In schwach exothermer Reaktion bildete sich ein farbloser Niederschlag, der nach 18 h von der Lösung abgetrennt und dreimal mit je 20 ml Hexan gewaschen wurde. Abkühlen der vereinigten Lösungen auf -78°C lieferte nach 17 h 5 als Rohprodukt (39.9 g). Aus dem Filtrat wurden nach Einengen weitere 9.7 g 5 gewonnen. Ausb. 45.6 g 5 (58%), Schmp. 70-72°C. Einkristalle wurden durch langsames Eindunsten einer gesättigten Hexanlösung erhalten. – $C_{17}H_{37}BClN_2P$ (346.7): ber. C 58.89, H 10.76, N 8.08; gef. C 59.26, H 11.25, N 8.12.

Chlor[(di-tert-butylphosphoranyliden)amino](2,2,6,6-tetramethylpiperidino)boran (6): Zu einer Lösung von 1.33 g 3 (4.3 mmol) in 10 ml Hexan wurden unter Rühren 0.93 ml einer 4.61 m etherischen HCl-Lösung pipettiert. Der rasch gebildete Niederschlag wurde in 2 h auf Raumtemp. erwärmt, durch Zentrifugieren von der Mutterlauge getrennt und mit 5 ml Hexan gewaschen. Die vereinigten Hexanlösungen enthielten gemäß NMR-Spektren ein 1:3-Gemisch von 5 und 6. Ausb. 1.35 g (90%). Nach 3 Monaten Lagerung bei Raumtemp. lag nurmehr 6 vor (³¹P-NMR). 5stdg. Erhitzen des Gemisches unter Rückfluß in Hexan führte zum gleichen Ergebnis. Aus Hexan-Lösung fielen zur Kristallstrukturanalyse geeignete Kristalle an. $-C_{17}H_{37}BClN_2P$ (346.7): ber. C 58.89, H 10.76, N 8.08; gef. C 58.64, H 10.91, N 8.06.

Di-tert-butyl { [(2,2,6,6-tetramethylpiperidino) boranyliden [amino] phosphonium-iodid (4): In eine Hexan-Lösung von 3 (1.2 g, 3.7 mmol, 20 ml) wurde bei Raumtemp. unter Rühren gasförmiges HI eingeleitet (Freisetzen von HI aus 0.5 ml einer 7.8 м HI-Lösung mit P_4O_{10} , Trocknen über P_4O_{10} , Trägergas^[21].) Dabei fiel sofort ein farbloser voluminöser Niederschlag aus, der nach 30 min durch Zentrifugieren abgetrennt wurde. Nach Waschen mit 5 ml Hexan und Trocknen i.Vak. betrug die Ausb. 0.70 g 4 (20%) Schmp. >210°C (Zers.). Im Filtrat ließ sich unumgesetztes 3 nachweisen. - C₁₇H₃₇BIN₂P (428.8): ber. C 47.61, H 6.35, N 6.53; gef. C 46.15, H 6.33, N 6.47.

Reaktion von 3 mit $HOSO_2CF_3$: In eine -78 °C kalte Lösung von 836 mg 3 (2.7 mmol) in 10 ml Hexan wurde unter Rühren eine Lösung von 1.22 g HOSO₂CF₃ (8.1 mmol) in Hexan getropft. Dabei fiel ein Produkt aus. Beim Auftauen bildeten sich drei Phasen: ein farbloses, festes Produkt in einer gelblichen, schwereren, öligen Phase und eine klare Lösung. Letztere zeigten im ¹¹B-NMR-Spektrum ein schwaches Signal bei $\delta = -21.5$ [möglicherweise tmpB(O-SO₂CF₃)₂]. Nach Abtrennen der Hexan-Lösung, Entfernen des Hexans i.Vak. und Lösen in C₆H₆ lieferte ein ³¹P-NMR-Spektrum vier Signale bei $\delta = 59, 61.2, 61.8$ und 88.5 (Intensitätsverhältnis etwa 1:3.5:1:0.5). Das intensivste Signal stammt von tBu₂PNH₂. Das in C₆H₆ aufgenommene Öl zeigte ein ¹¹B-NMR-Signal bei δ = 0.65 mit Schulter bei $\delta = -2$. Ersteres ordnen wir dem B[O- $SO_2CF_3_4$ -Anion zu, letztere $B(OSO_2CF_3)_3$ [$\delta^{11}B(Toluol)$]: $\delta =$ $-2.2^{[22]}$.

Kristallstrukturanalysen^[23]: Die Messungen erfolgten mit einem Nicolet-R3- (5) bzw. einem Siemens-P4 (6)-Vierkreisdiffraktometer mit Mo-Ka-Strahlung (Graphitmonochromtor). Zur Strukturlösung und Verfeinerung dienten die Programme SHELXTL PLUS und SHELXTL PLUS PC. Einkristalle wurden unter Ar in Glaskapillaren eingeschmolzen und bei 20°C gemessen.

5: $C_{17}H_{37}BClN_2P$, $M_r = 346.7$, farblose Einkristalle aus Hexan, $0.28 \times 0.32 \times 1.05$ mm; monoklin, Raumgruppe $P2_1/c_a = 6.326(2)$, $b = 22.434(8), c = 14.735(5)\text{\AA}, \beta = 90.97(3)^{\circ}, V = 2091(1)\text{\AA}^{3}, Z =$ 4, $d_r = 1.101 \text{ Mg/m}^3$, $\mu = 0.256 \text{ mm}^{-1}$, $F(000) = 760. - 2\Theta$ -Bereich: $3-49^{\circ}$ in h, k, \pm /. Meßgeschwindigkeit: $2.19-29.3^{\circ}$ /min; Scan-Breite: 0.8°; 3042 gemessene Reflexe, davon 2495 symmetrieunabhängig und 1889 beobachtet $[3\sigma(F)]$. – Strukturlösung mit Direkten Methoden, Nicht-H-Atome anisotrop verfeinert, H-Atome mit Reitermodell und fixiertem $U_1(H) = 80$ (Å²·10³). R =0.0832, $R_w = 0.129$; $w^{-1} = \sigma^2(F) + 0.0116 F^2$, 119 verfeinerte Parameter, GOOF = 1.12, größte Restelektronendichte: $0.45e\text{\AA}^{-3}$.

6, $C_{17}H_{37}BClN_2P$, $M_r = 346.7$, Kristallgröße: $0.35 \times 0.4 \times 0.45$ mm, monoklin, Raumgruppe $P2_1/c$, a = 16.792(5), b = 15.120(3), c = 17.096(4)Å, $\beta = 90.41(1)^\circ$, V = 4340(2)Å³, Z = 8, $d_r = 1.061$ Mg/m³, $\mu = 0.249$ mm⁻¹, $F(000) = 1520. - 2\Theta$ -Bereich: 2-50° in h, k, $\pm l$, 7482 gemessene, 7199 unabhängige und 3550 beobachtete $[4\sigma(F)]$ Reflexe, 405 verfeinerte Parameter, Reitermodell für die H-Atome, außer den P-gebundenen, die frei verfeinert wurden^[24]. $R = 0.0634, R_w = 0.0629, w^{-1} = \sigma^2(F) + 0.0002 F^2$; GOOF = 1.59, größte Restelektronendichte: 0.35eÅ³.

- * Herrn Prof. Dr. O. J. Scherer zum 60. Geburtstag gewidmet.
- [1] 220. Mitteilung B. Ederer, N. Metzler, H. Nöth, *Chem. Ber.* 1993, 126, 2002–2010.
- ^[2] P. I. Paetzold, C. von Plotho, H. Schram, H.-U. Meier, Z. Naturforsch., Teil B, 1984, 39, 610-616.
- [3] P. I. Paetzold, E. Schröder, G. Schmid, R. Boese, Chem. Ber. 1985, 118, 3205-3216; H. Nöth, S. Weber, ibid. 1985, 118, 2144-2146.
- U. Wietelmann, Dissertation, Universität München, 1986.
- ^[5] P. Kölle, Dissertation, Universität München, 1987; H. Nöth, Angew, Chem. 1988, 100, 1664–1684; Angew, Chem. Int. Ed. Engl. 1988, 27, 1603–1621.
- [6] J. Kroner, H. Nöth, K. Polborn, H. Stolpmann, M. Tacke, M. Thomann, Chem. Ber. 1993, 126, 1995-2002
- ^[7] G. A. Olah, K. Laali, J. Org. Chem. 1984, 49, 4591-4593; Ch. Euringer, Dissertation, Universität München, 1988. [8]
- J. S. Hartman, G. J. Schrobilgen, Inorg. Chem. 1972, 11, 940-951.
- **[9]** S. Weber, Dissertation, Universität München, 1984.
- ^[10] ³¹P-NMR-Signale von Phosphorverbindungen des Typs $tBu_2PH=NR$ liegen bei $\delta = 45$ mit ${}^{1}J({}^{31}P^{1}H) = 444-456$ Hz. A. M. Caminada, E. Ocando, J. P. Majoral, C. Cristante, G. Bertrand, *Inorg. Chem.* 1986, 25, 712–714.
- ^[11] H. Nöth, unveröffentlicht.
- ^[12] δ^{31} P von Verbindungen des Typs R₂N-PR₂ findet man im Bereich von $\delta = 37-65$ M. N. Crutchfield, C. H. Dungan, J. H. Letcher, V. Mark, J. R. van Wazer, Topics in Phosphorus Chemistry, Bd. 5, Interscience Publ., New York, London, Sidney, 1967
- ^[13] H. Nöth, B. Wrackmeyer, Nuclear Magnetic Resonance Spectroscopy, NMR Basic Principles and Progress (Hrsg.: P. Diehl, E. Fluck, R. Kosfeld), Springer-Verlag, Berlin, Heidelberg, New York, 1978.
- ^[14] Bereich 1.67–1.70Å; D. E. C. Corbridge, The Structural Chemistry of Phosphorus, Elsevier Publ. Comp., Amsterdam, London, ^[15] Beispiele: BCl₃ 1.71, B₂Cl₄ 1.73, PhBCl₂ 1.72Å.
 ^[16] H. Nöth, H.-J. Vetter, *Chem. Ber.* **1963**, *96*, 1109–1118.
 ^[17] K. Issleib, W. Seidel, *Chem. Ber.* **1959**, *92*, 2683–1612.

- ^[18] E. E. Nifant'ev, S. Yu. Burmistrov, L. K. Vasyanina, M. Grachov, Zh. Obsh. Khim. 1989, 59, 2639-2640; E. E. Nifant'ev, M. K. Grachov, S. Yu. Burmistrov, A. R. Bekker, L. K. Varsanina, M. Yu. Antipia, Yu. T. Struchkov, J. Gen. USSR, Engl. Transl. 1992, 1201-1208.
- ^[19] H. Rossknecht, A. Schmidpeter, Z. Naturforsch., Teil B, 1971, 26, 81-82
- ^[20] H. Binder, R. Fischer, Chem. Ber. 1974, 107, 205-209.
- ^[21] G. Brauer, Handbuch der präparativen Anorganischen Chemie, 3. Aufl., Enke-Verlag, **1975**, S. 300.
- Chr. Euringer, Dissertation, Universität München, 1988. Der δ¹¹B-Wert von Tris(triflato)boran legt nahe, daß kein monomeres Molekül in Benzol- oder Toluol-Lösung vorliegt.
- ^[23] Weitere Einzelheiten zu den Kristallstrukturbestimmungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-76344 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD-57718, der Autorennamen und des Zeitschriftenzitats anefordert werden.
- [24] Die gefundenen P-H-Bindungslängen sind mit 1.19 und 1.28Å für eine P-H-Bindung (1.4Å) zu kurz. In der vorausgehenden Differenz-Fourier-Synthese ergaben sich günstigere Lagen. Wurden diese Positionen festgehalten, wich der R-Wert im Vergleich mit dem frei verfeinerten Modell nicht ab.

[319/93]